
NASA-CR-191986

///-d,/..-_/2.-

Fuzzy Set Methods for Object
Recognition in Space Applications

Second Quarter Report

- --] James M. Keller

_ _ _-_-_ _ _----.L _=: _, : ,- •

University of Missouri-Columbia

10/i/91 - 12/31/91

,0

.--I
N
!

O,
Z

Z

F-

U-

P.4

r-I
I

l,h

Z

i-4

r0 ,o

u ,,1"
c .-d

0

),,-,I
C_
0_'O

uJ r0
uIE .
<"- g _

ZC_

Z)'_I 0
C_ ,,-, _)

I-, _ ._ L- U_

I'-C_ , 0

Utl-,, _ U 4-)

._O_O

Cooperative P, oreernent NCC 9-16

Research Activity No. SE.42

NASA Johnson Space Center

Information Systems Directorate

informat;on Technology Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

=

INTERIM REPORT

%

v

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC} and local industry to acUvely support research

In the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership wlth JSC to jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

compuUng and educational facilities are shared by the two Institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UllCLand its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

Uon, Human Sciences and Humanities, and Natural and Applied Sciences7 "_"

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of
)industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

Uonal sources of expertise to conduct needed research. For example, UttCL

has entered into a special partnership with Texas A&M Univcrslty to help

oversee RICIS research and education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the compu ring and informa-

tion sciences. RICIS, worklngjoinfly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UI ICL, NASA/JSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by James M. Keller of the University of

Missouri-Columbia. Dr. Terry Feagin was the initial RICIS research coordinator

for this activity. Dr. A. Glen Houston, Director of RICIS and Assistant Professor

of Computer Science, later assumed the research coordinator assignment.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

the NASA Johnson Space Center and the University of Houston-Clear Lake. The

NASA technical monitor for this activity was Robert N. Lea, of the Software

Technology Branch, Information Technology Division, Information Systems

Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

Second Quarter Report: October 1, 1991 to December 31, 1991

Fuzzy Set Methods For Object Recognition In Space Applications

Fixed-Price Subcontract NO. 088

Under Cooperative Agreement No. NCC 9-16

Project No. SE. 42

To:

UNIVERSITY OF HOUSTON-CLEAR LAKE

2700 Bay Area Boulevard
Houston, TX 77058

UHCL Technical Representative:

Dr. Terry Feagin

Principal Investigator:

James M. Keller

Electrical and Computer Engineering Department
University of Missouri-Columbia
Columbia, Mo. 65211
(314) 882-7339
ecekeler@ umcvmb.bimet

J

Introduction

For the second quarter of this research contract, we are going to report progress on

the following four Tasks (as described in the contract):

.

q

Fuzzy set-based decision making methodologies;

Feature Calculation;

3. Membership Calculation;

5. Acquisition of images.

Si.nce there has been a delay in acquiring images from NASA, we have devoted

more energies to tasks 1 and 2, and performed research on task 4: Clustering for curve and

surface fitting (which was scheduled for the third quarter). The descriptions of our

progress are written as "stand-alone" sections, including a copy of a manuscript on Quadric

Shell Clustering which has been submitted to the 1992 IEEE Computer Vision/Pattern

Recognition Conference.

r.

Also included is a Sun 4 tape (TAR format) including source code and images. The

Read_Me f'fle on the tape will describe its contents.

Jr

Fuzzy set-based decision makin_ methodologies

We devoted most of our efforts this quarter to the development of the theory and

application of methodologies for decision making under uncertainty. This section contains

two subreports, the first on properties of general hybrid operators, while the second

considers some new research on generalized threshold logic units.

_t

HYBRID AGGREGATION OPERATORS

1.0 Introduction:

In this report, we explore the properties of the additive _model where the intersection part

is fu'st considered to be the product of the input values, and the union part is obtained by an

extension of De Morgan's law to fuzzy sets. Then the Yager's class of union and intersection is

used in the additive T-model. The inputs are weighted to some power that represents their

importance and thus their contribution to the compensation process.

2.0 Fuzzy Aggregation Connectives:

Fuzzy aggregation connectives are useful for aggregating memberships functions. The

resulting membership depends on the type of aggregation connective used, and this type is

dictated by the kind of attitude that we expect from this aggregation connective. These

connective, s are very useful in decision analysis and making. Several types of fuzzy connectives

have been used:

2.1 The union connective:

It is used when the aggregated value is required to be high if any one of _e input values

(xi _ [0,1]) is high. Examples are:

The maximum operator:

u(Xl, x2 x m) = max(Xl, x2 Xm)

Yager's union operator:

u(xl, x2 Xm) = min { 1, [

m

xiP]l/P], p _ [0,,,,,).
=1

(1)

2.2 The intersection connective:

(2)

It is used when the aggregated value is required to be high only when all the input values

are high. Examples are:

The minimum operator:

i(Xl, x2 Xm) = min(xl, x2 Xm) (3)

7

Yager's intersecion operator:

i(Xl, x2 xm)

2.3 Mean operators:

m

= 1- min { 1, [_ (1-xi)P]l/p }, p _ [0,_). (4)
i=l

Unlike the intersection and union operators, the mean operator does not take an extremist

position in aggregating the input values, it rather regards the different criteria as mutually

compensable in nature. It provides an aggregated value

m(Xl, x2, ..., Xm) such that

min(Xl, x2 Xm) < m(Xl, x2, ..., Xm) < max(Xl, x2 Xm).

For example the generalized mean is defined by:
m m

g(Xl, x2 Xm) = [_ wi xiP]l/p, where _ wi = 1. (5)
i=l i=l

The wi are weights representing the importance of certain criteria, and p e (- 00, *_).

2.4 Compensatory or hybrid connectives:

In this type of connective, the high input values are allowed to compensate for the low

ones. For example the additive and multiplicative y operators are defined as weighted arithmetic /

geometric means of union and intersection operators respectively:

A _/B = (1 -7) (A riB) + T(A u B). (6)

A_/B= (Ac_B)(1-T) (AuB)Y, (7)

It is clear that both of these operators can act as a pure intersection or union at the extremes:

y = 0 and i respectively. But they allow the intersection and union to compensate for each other

when 0 < 7 <1. Thus y can be regarded as the parameter that controls the degree of

compensation.

2.5 The multiplicative T-model:

This model was introduced by Zimmerman and Zysno and is very similar to the

multiplicafive y-operator:

m m

y = (II xiSi) (I - T) (I - l-I (I - xi)Si)T
i=l i=l

(8 -a)

where

m

_Si-m
i=l

(8-b)

and 0 < T < 1. (8-c)

The xi • [0,1] are the inputs or criteria to be aggregated, 8i represents the weight

associated with the input xi and is related to the importance of that input, and T • [0,1] controls

the degree of compensation between the union and intersection parts of the operator. Note that

the intersection used in this case is the product of the inputs each weighted to some power 8i :
m

Yl = _ xi _i (9)
i=l

m

Yl = YI xi 8i, (10)
i=l

and the union is obtained from DeMorgan's law extended to fuzzy sets:
m

y2=l- n(1-xi) 8i
i=l
m

Y2 = i - 1"[(1 - xi) _i.
i=l

(I1)

(12)

But nothing restricts us from using other types of intersection and union connectives.

3.0 The Additive](-model:

Similarly to the "?-model presented in 2.4, one can define an additive y-model as:

y=(1 -_)Yl +YY2,

where Yl _md Y2 are an intersection and union as given by (9) and (11).

(13)

3.1 Using the product as an intersection:

In paJ_icular, using the product for the intersection as given by (10) and (12)
m m

y = (1 - T) 1-I xiSi + T (1 - I'[(1 - xi) 3i).
i=l i=l

(14)

This model has several interesting properties that we proceed to show using the following partial

derivative.,::

3Y =Y2-Yl
OY

_X_k=$k{ (1-')ylxk

(15)

y (1 - Y2)

+ (1 - Xk) f (16)

Property 1. The sensitivity of y with respect to xk is proportional to Sk and is given by

Sx k _ Xk Ox_kY

-_Sk{(1 -_')Yl +,xk (lxk_2) } (17,
y (1

Proof. This can be easily obtained from (16).

We c_m see that the contribution of xk to the compensation process increases or decreases

when the associated value of Sk increases or decreases, because the value of the function inside

the parentheses in (17) is always non-negative.

=

Property 2. The additive T-model is a monotonically increasing function with respect to Xk.

Proof. This follows because the right hand side of (16) is always non-negative.

Property 3. The additive T-model is a monotonically increasing function with respect to T, and

hence

Yl < Y < Y2. (18)

Proof. It (:an be seen that
m

I'I (1- xi) 5i _<(1 - xj)SJ 'v' j = 1,...,m.
i=1

In particular, for that input x, associated with the largest weight 8max

121

1-I (1 - xi) 8i
i=l

<_(1 - x,) 8max <_(1 - x,).

The last inequality follows since 8max > 1 because of the constraint in (8-b). Therefore

Y2 -> x,.

Similarly,
m

1"I xi 8i -< xjSJ k/j = 1.... ,m, In particular,
i=l
m

I-[xi 8i < x, 8max < x,. Therefore
i=1

Yl <x,.

It follows from (19) that Y2 > Yl. Hence using (15) _y __ 0.

(19-a)

(19-b)

"- Propety 4. The range of the additive '/-model is as follows:

in
Xmi n < y < 1 - (1 - Xmax) m, (20)

where

Xmin = min(Xl, x2 Xm)

and

Xmax = max(Xl, x2, ..., Xm).

Proof.

m m

1-I xi 5i > H xmin 5i = x_ain', hence
i=l i=l

m

Yl -> Xmi n.

Similarly,
m m

rI (1- xi) 5i > rI (1 - xmax) _5i
i--1 i=l

= (1 - Xmax) m, hence

Y2 <- 1 - (1 - Xmax) m.

(21-a)

(21-b)

Finally, the range is established as in (20) using (18) and (21).

Therefore the range of the additive y-model is limited and does not extend to 0 and 1 unlike

the Yager's union and intersection which can be parametrized to do so. However, if m is

sufficiently large, the range of the additive y-model may still suffice for most applications. One

way to enlarge the range while preserving all the properties is to loosen the constraint in (8-b),

and replace it by the following constraint:

There exists at least one 8i > 1. (21-c)

This constraint is necessary in order to preserve property 3. In this case, the range becomes

m m

(Eli) (Xsi)

Xmin i=1 _<y_<l-(1-Xmax) i=l , (2i-d)

m

which get.,; closer to [0,1] as _5i increases
i=l

4.0 The Additive T-model with Yager's union and intersection:

In (13), we can use Yager's intersection and union. Therefore Yl is given by (4) and Y2 is

given by (2):

Yl = 1 - rain {1,fl(xi, p)}, (22-a)

where
m

fl(xi, p)= [_ (1-xi)P]l/p, p E [0,,_), (22-b)
i=l

and

Y2 = min {1, f2(xi, p)}, (23-a)

where
m

f2(xi, p) = [_ xiP]l/p, p _ [0,oo). (23-b)
i=1

Note that

fl(xi, p) = f2(1 - xi, p) (23-c)

4.1 Properties of the Yager's union and intersection connectives:

Property 1. Yl is monotonically non decreasing, and Y2 is monotonically non increasing with

respect to p.

Proof. Consider
m

In f2 = 1/p in [_ xiP]
i=l

-- in

xiP lnxi
i=l

P m

xiP
- i=l

ITI

In _ xiP
i=1

since

111

 lnf2i 2E3p - _ xiPp2 xiP
i=l

i=1

xiP
<1.

m

xiP
i=l

In|_ xiP

k,i=l

<0

Therefore f2(xi, p) is monotonically non increasing with respect to p. Thus Y2 is monotonically

non increasing with respect to p. It follows from (23-c) that fl(xi, p) is monotonically non

increasing with respect to p, and hence Yl is monotonically non decreasing with respect to p.

Property 2.

a. lim Yl = imin(Xl, x2 Xm) =_xk

p--*0 Lu

b. lira Yl = min(Xl, x2, ..., xm)

p----)_

C. lim y2=Umax(Xl, X2.... ,Xm)=_ xk

p---)0 tt

d. lira Y2 =max(xl,x2 Xm)

p--_oo

when xi= 1 V i ck
otherwise

when xi=OV i_k
otherwise

Proof.

a. Suppose there exists only one input xk e 1 while all the other inputs xi = 1 V i _ k.

Hence

fl(xi, p)= [(1-xk)P]lip = (1-Xk)< I.

Therefore from (22-a), Yl = Xk.

On the other hand suppose that inputs xi ¢: 1 for i = 1.... ,s, while the rest of the inputs

for i = s+l m. Hence
S

lim In fl(xi, p) = lira (l/p) In [_ (1-xi)P] = lira
p----r0 p---)0 i=l p---_0

It follows from (22-a) that lim Yl = 0.

p--->0

(l/p) In s = **.

xi= 1

b. Since

lira f2(xi, p)

p---->,,_

= max(x1, x2 Xm) as will be proved in in d, it follows from

(23-c) that
lira

p---->o,

fl(xi, p) = max(1 - Xl, 1 - x2 1 - Xm)

= 1 - min(xl, x2 x m) _<1.

Hence property 2 b. follows directly from (22-a).

i

c. Suppose there exists only one input xk ¢ 0 while all the other inputs xi = 0 V i _ k.

Hence

f2(xi, p)= [xkP]l/p = xk < 1.

Therefore from (23-a), Y2 = xk.

On the other hand suppose that inputs xi ¢ 0 for i = 1 s, while the rest of the inputs xi = 0

for i = s+l, m. Hence
S

lim In f2(xi, p) = lim (I/p) In [_ xiP l =
p_0 p_0 i=l

It follows from (23-a) that lira Y2 = 1.

p_0

lim (l/p) In s = **.

p--->0

do lirn In(f2(xi, P))

p--->_

m

ln(_ xiP)
i=l

P

m

xiP In xi
i=l

m

_ xiP
i-1
Ill

using L'Hopital's rule,

Z xiP

= lim m- In xi

P-'+** _ xiP
i=l

i=l

m

= lira rn_xk') In xi, a-_ere Xk =

P--_ (xi,_p

i=l _,xk)

i=1

max(xl,x2 ,Xm)

m

p_** .= t,xk)
m

i___l (x_) pln

i_k

= lira (lnxk+

p-.->_

)
rll

I+Z
i=l

i_k

xi)

In xi

Therefore
lira

p---_o_

= In Xk.

f2(xi, p) = xk = max(xl, x2..... Xm) -< I.

Hence property 2 d, follows directly from (23-a),

Property 3. Yl and Y2 are monotonically non decreasing with respect to xk.

Proof.

_f2(xi, p) m
_xk - xkP-1 [_ xiP]l/p-1 > O.

i=l

Therefore f2(xi, p) and hence Y2 is monotonically non decreasing with respect to xk. It follows

from (23-c) that fl(xi, p) is monotonically non increasing and therefore Yl as given in (22-a) is

monotonically non decreasing with respect to xk.

Property 4. The range of Yl and Y2 is as follows

imin(xl, x2 , Xm) -< Yl -< min(xl, x2 Xm)

max(xl, x2 Xm)< Y2 -< Umax(Xl, x2 Xm)

(24-a)

(24-b)

Proof. This property follows directly from properties 1 and 2.

Therefore both Yl and Y2 can be tuned to act as an intersection and union respectively with

the desired attitude, from the least optimistic to the most optimistic operator, by a proper

selection of the parameter p. Property 4 also guarantees that the union is always greater than the

intersection even when different values of p are used in y 1 and Y2.

Y2 > Yl. (24-c)

4.2 The additive y-model with Yager's union and intersection and weighted

inputs.

The output value has the form

y = (1 - y) Yl + YY2, (25)

where

Yl = 1 - min {1,fl(xi 8i, p)}, (26-a)

where

m

fl(xiSi, P)= [E (1-xiSi)P]l/p, p _ [0,o.), (26-b)

i=l

and

Y2 = rain {1, f2(xi gi, p) }, (27-a)

where

m

f2(xiSi, P) = [Z (xiSi)P]l/p, p _ [0,_0).
i=l

Note that

fl(xi 8i, p) = f2(1 - xi 8i, p)

where

m

_8i= m
i=l

and 0 <y< 1.

, (27-b)

(27-c)

(27-d)

(27-e)

Thexi E [0,1] axetheinputsorcriteriato beaggregated,8i representstheweight

associatedwith theinputxi andis relatedto the importanceof thatinput,andye [0,1] controls

thedegreeof compensationbetweentheunionandintersectionpartsof theoperator.

It iseasyto seethaty1andY2still satisfyall thepropertiesshownin 4.1,if we replacethe

inputsxi by theirweightedversion

ai = xi5i.

Thismodelhasseveralinterestingpropertiesthatweproceedto showusingthefollowing

partialderivatives:

_Y= Y2 - Yl

ax_k = _ak _ak xkSk_ 1 .bYl bY2=Sk {(1-7)_- +Y_-_- }

(28)

(29)

Property 1. The sensitivity of y with respect to xk is proportional to 8k and is given by

xk
Sxk =y ax k

i

8k ak 3Yl bY2

- Y {(1-_,)_-_- +y_-_- } (30)

Proof. This can be easily obtained from (29).

We c_m see that the contribution of xk to the compensation process increases or decreases

when the associated value of 8k increases or decreases, because the value of the function inside

the paxentheses in (30) is always non-negative.

Property 2. The additive T-model using Yager's union and intersection is a monotonically

increasing function with respect to xk.

Proof. This follows because the right hand side of (29) is always non-negative from property 3

in 4.1 if Xk is replaced by ak.

Property 3. The additive y-model using Yager's union and intersection is a monotonically

increasing function with respect to '/, and hence

Yl < Y < Y2. (31)

Proof. This property follows directly from (28) and (24-c).

Propety 4. The range of the additive y-model using Yager's union and intersection is as

follows:

imin(xlgl, x2_2 , Xm_m) < y _<Umax(X181, x282, ..., xmSm), (32-a)

where

imin(X181' x2_52 xmSm) = {_ k_Sk otherwiseWhen xi 8i = 1 V i ;_ k (32-b)

Umax(XlS1, x252 xmgm) = _xk 5k when xi 8i = 0 V i _ k
I1 otherwise

(32-e)

Proof. This property follows directly from (24-a), (24-b) and (31).

Therefore the range of the additive y-model using Yager's union and intersection is not as

limited as the additive "/-model using the product as an intersection, and does extend to 0 and I

depending on the choice of the parameter p.

Property 5. In the case where the constraint on the 8i is loosened as in (21-c), all the previous

properties still hold. In addition, the additive "/-model using Yager's union and intersection is a

monotonically non increasing function with respect to _ik.

Proof.

__ = _ _ak

_Sk Oak _Sk

Oyl Oy2
- akln xk 1(I -y)_- +y_- } (33)

The expression on the right hand side is obviously negative since xi e [0,1] and the quantity

inside the brackets is positive.

!

References

1. R. C. Luo and M. G. Kay, "Multisensor Integration and Fusion in Intelligent

Systems", IEEE Transactions on Systems Man and Cybernetics, Vol. 19, No. 5, Sept/Oct.

1989, pp. 901-931.

2. J. M. Richardson and K. A. Marsh, "Fusion of Multisensor Data", International

Journal _fRobotics Research, Vol. 7, No. 6, 1988, pp. 78-96.

3. R. Krishnapuram and J. Lee, "Fuzzy-Connective-Based Hierarchical

Aggregation Networks for Decision Making", Fuzzy Sets and Systems, Vol. 46, 1992, pp.

1-17.

4. R. Krishnapuram and J. Lee, "Fuzzy-Compensative-Connective-Based

Hierarchical Networks and their Application to Computer Vision" submitted to the Journal

of Neural Networks.

5. H. Tahani, and J. Keller, "Automated Calculation of Non-additive Measures for

Object Recognition", Proceedings of the SPIE Symposium on Intelligent Robots and

Computer Vision IX, Boston, MA, November, 1990.

6. H. Tahani, "The Generalized Fuzzy Integral in Computer Vision", Ph.D.

Dissertation, University of Missouri-Columbia (J. Keller, advisor), 1991.

7. D. Dubois and H. Prade, "A Review of Fuzzy Set Aggregation Connectives",

Information Sciences, vol. 36, no. l&2, pp. 85-121, luly/August 1985.

8. M. Mizumoto, "Pictorial Representations of Fuzzy Connectives, Part I: Cases of

t-norms, t-conorms, and Averaging Operators", Fuzzy Sets and Systems, Vol. 31, 1989,

pp. 217-242.

9. M. Mizumoto, "Pictorial Representations of Fuzzy Connectives, Part II: Cases

of Compensatory Operators, and Self-Dual Operators", Fuzzy Sets and Systems, Vol. 32,

1989, pp. 45-79. ,=-
<

10. H. Dyckhoff and W. Pedrycz, "Generalized Means as a Model of

Compen:;ation Connectives", Fuzzy Sets and Systems, vol. 14, no. 2, pp. 143-154,

November 1984.

11. H.-J. Zimmermann and P. Zysno, "Decisions and Evaluations by Hierarchical

Aggregation of Information", Fuzzy Sets and Systems, vol. 10, no. 3, pp. 243-260, July

1983.

12. E. M. Riseman and A. R. Hanson, "A Methodology for the Development of

General Knowledge-Based Vision Systems", in Vision Systems and Cooperative

Computation, M. A. Arbib (Editor), MIT Press, Cambridge Ma, 1988.

13. T. L. Huntsburger, C. L. Jacobs and R. C. Cannon, "Iterative Fuzzy Image

Segmentation", Pattern Recognition, Vol. 18, 1985, pp. 131-138.

14. J. Bezdek, R. Canon, R. Dave, M. Trivedi, "Segmentation of a Thematic

Mapper Image Using the Fuzzy C-Means Clustering Algorithm", IEEE Transactions on

Geo. Science and Remote Sensing, Vol. GE 24, No. 3, 1986, pp. 400-408.

15. J. Keller, and J. Givens, "Membership Function Issues in Fuzzy Pattern

Recognition," Proceedings, International Conference on Systems, Man, Cybernetics,

Tucson, AZ, November 1985, pp. 210-214.

16. K. Unldesbay, J. Keller, N. Unklesbay and D. Subhangkasen, "Determination

of Doneness of Beef Steaks Using Fuzzy Pattern Recognition", Journal of Food

Engineering, VoI. 8, No. 2, 1989, pp. 79-90.

17. J. Keller and R. Krishnapuram, "Fuzzy Set Methods in Computer Vision"= An

Introduction to Fuzzy Logic Applications in Intelligent Systems, R. Yager and L. Zadeh

(eds)., to appear.

18. J. C. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms,

Plenum Press, 1981.

19. I. Gath and A. B. Geva, Unsupervised optimal fuzzy clustering, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, July 1989, 773-781.

20.R. KrishnapuramandA. Munshi,"Cluster-BasedSegmentationof Range

Images Using Differential-Geometric Features", under review.

211. Krishnapuram and C.-P. Freg, "Fitting an Unknown Number of Lines and

Planes to Image Data through Compatible Cluster Merging", under revision for Pattern

Recognit,!on.

22. R. Krishnapuram and Chih-Pin Freg, "Fuzzy Algorithms to Find Linear and

Planar Clusters and Their Applications", accepted for presentation at the IEEE International

Conference on Computer Vision and Pattern Recognition, Hawaii, June 1991.

23. J. Keller and D. Hunt, "Incorporating Fuzzy Membership Functions into the

Perceptron Algorithm," IEEE Transactions on Pattern Analysis Machine Intelligence, Vol.

PAMI-7, No. 6, November, 1985, pp. 693-699.

24. R. P. Yager, S. Ovchinnikov, R. M. Tong, N. T. Nguen, Fuzzy Sets and

Applications: Selected Papers by L. A. Zadeh, John Wiley, New York, 1987.

25. J. Keller, D. Subhangkasen, K. Unklesbay, N. Unldesbay, "Approximate

reasoning for Recognition in Color Images of Beef Steaks", to appear in the International

Journal of General Systems, Special Issue on Pattern Recognition, 1990.

26. J. Keller, M. Gray and J. Givens, "A Fuzzy K Nearest Neighbor Algorithm",

IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-15, No. 4, July/Aug.

1985, pp. 580-585.

27. J. Keller and H. Qiu, "Fuzzy Set Methods in Pattern Recognition," in Pattern

Recognition, Lecture Notes in Computer Science, Vol. 301, J. Kittler, (e&), Springer-

Verlag, Berlin, 1988, pp. 173-182.

28. J. Keller, G. Hobson, J. Wootton, A. Nafarieh and K. Luetkemeyer, "Fuzzy

Confidence Measures in Midlevel Vision," IEEE Transactions on Systems, Man and

Cybernetics, Vol. SMC-17, No. 4, 1987, pp. 676-683.

2!). A. Nafarieh, and J. Keller, "A Fuzzy Logic Rule-Based Autctnatic Target

RecogniTer", International Journal of Intelligent Systems, to appear, 1991.

30. P. J. Besl and R. C. Jain, "Segmentationthrough variable-order surface

fitting", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, March

1988, pp. 167-192.

31. N. Yokoya and M. D. Levine, "Range Image Segmentation based on

differential Geometry: A Hybrid Approach",lEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 11, June 1989, pp. 643-649.

32. A. Pentland, "Fractal-Based Description of Natural Scenes", IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 6, No. 6, 1984, pp. 661-674.

33. J. Keller, R. Crownover, and R. Chen, "Characteristics of Natural Scenes

Related to the Fractal Dimension," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. PAMI-9, No. 4, 1987, pp. 621-629.

3,1. L Keller, S. Chen and R. Crownover, "Texture Description Through Fractal

Geometry," Computer Vision, Graphics and Image Processing, vol. 45, 1989, pp. 150-

166.

35. S. Chen, J. Keller, and R. Crownover, "Shape from Fractal Geometry",
r

Artificial Intelligence, Vol. 43, 1990, pp. 199-218.

3(5. B.B. Mandelbrot and J. Van Ness, "Fractional Brownian motions, fractional

noises and applications," SIAM Rev., vol. 10, no. 4, p. 422, 1968.

37. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco,

1983.

38. R. Voss, "Random Fractals: Characterization and Measurement", in Scaling

Phenomenon in Disordered Systems, R. Pyrm and A. Skjeltorp Eds., Plenum Press, New

York, 1986.

39. J. Keller and Young-Bo Seo, "Local Fractal Geometric Features for Image

Segmenuttion", to appear in the International Journal of Imaging Systems and Technology,

Special I_;sue on Computer Vision, 1990.

40. R. M. Bolle and B. Vemuri, "On Three-Dimensional Surface Reconstruction

Methods", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No.

1, January 1991, pp. 1-13.

41. D. E. Gustafson and W. Kessel, Fuzzy clustering with a fuzzy covariance

matrix, Proceedings oflEEE-CDC, 2 (K. S. Fu ed.), IEEE Press, N. J., p. 761 (1979).

42. E. Diday and I. C. Simon, Clustering analysis, in Digital Pattern Recognition,

K. S. Fu (ed.), Springer, New York, p. 47 (1976).

43. O. D. Faugeras and M. Hebert, "The representation, recognition, and

positioning of 3-D shapes from range data", In Three Dimensional Machine Vision, T.

Kanade (Ed.), Kluwer, Norwell, Ma, 1987.

44. D. Casasent and R. Krishnapuram, "Curved Object Location by Hough

Transformations and Inversions", Pattern Recognition, Vol.20, No. 2, 1987, pp. 181-188.

45. R. Krishnapuram and D. Casasent, "Determination of Three-Dimensional

Object Location and Orientation from Range Images", IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 11, No. 11, November 1989, pp. 1158-1167.

46. J. Keller, H. Qiu, and H. Tahani, "The Fuzzy Integral in Image Segmentation,"

Proceedings, NAFIPS-86, New Orleans, June 1986, pp. 324-338.

4'7. S.K. Pal and A. Rosenfeld, "Image Enhancement and Thresholding by

Optimization of Fuzzy compactness", Pattern Recognition Letters, Vol. 7, 1988, pp. 77-

86.

48. J. Keller and L. Stzandera, "Spatial Relationships Among Fuzzy Subsets of an

Image", Proc. Int. Symposium in Uncertainty Modeling and Analysis, Univ. of Maryland,

December, 1990, pp. 207-211.

49. L. Zadeh, "The concept of a linguistic variable and its application to

approximate reasoning", Information Sciences, Part 1, Vol. 8, pp. 199-249;, Part 2, Vol.

8, pp. 301-357; Part 3, Vol. 9, 43-80, 1975.

J

50. J. Keller and H. Tahani, "Implementationof Conjunctive and Disjunctive

Fuzzy Logic Rules with Neural Networks", International Journal of Approximate

Reasoning, Special issue on "Fuzzy Logic and Neural Networks for Control", to appear,

1991.

51. A. Rosenfeld and A.C. Kak, Digital Picture Processing, Vol. 2, Academic

Press, N.Y., 1982.

52. D. Dubois and H. Prade, A class of fuzzy measures based on triangular norms,

Internat. J. Gen. Systems 8 (1982) 43-61.

53. G.J. Klir and T.A Folger, Fuzzy sets, Uncertainty and information (Prentice

Hall, Englewood Cliffs, NJ, 1988).

54. R.J Krishnapuram, A belief maintenance scheme for hierarchical knowledge-

based image analysis systems, in: Proc. 3rd IFSA Congress, Seattle, 333-336.

5:5. D. Sabbah, Computing with connections in visual recognition of origami

objects, Cognitive Sci. 9 (1985) 25-50.

56. U. Thole and H.-J. Zimmerman, On the suitability of minimum and product

operations for the intersection of fuzzy sets, Fuzzy sets and systems 2, (1979) 167-180.

5"7. R.R Yager, Fuzzy decision making including unequal objectives, Fuzzy sets

and systems 1 (1978) 87-95.

5_]. R.R Yager, On ordered weighted averaging aggregation operators in

multicrit¢;ria decision making, IEEE Trans. Systems Man Cybernet. 18 (1988) 183-190.

59. H.-J. Zimmerman and P. Zysno, Latent connectives in human decision

making, Fuzzy Sets and Systems 4 (1980) 37-51.

GENERALIZED THRESHOLD LOGIC UNITS

1. Introduction

Finite automata first emerged as a model of neural networks in the work of McCulloch and

Pitts (1943) and are natural extensions of switching circuits. Switching circuits consisting of

conventional gates (developed from boolean logic) can require many components and

interconnections whereas another type of switching device called the threshold logic unit

(developed from threshold logic), usually does not. There are systematic methods to synthesize

networks consisting of threshold logic units, and these methods can be used to synthesize decision

networks when the input and output variables are binary. This method of synthesis avoids the

problems due to local minima in other network training schemes such as the back propagation

algorithm. Extension of binary logic synthesis methods to multiple valued logic synthesis methods

will enable us to synthesize decision networks when the input/output variables are not binary. This

will be discussed in section 7. We now discuss the idea behind the threshold logic unit and its

applications to pattern classification.

2. Threshold logic unit

A threshold unit (gate) consists of n two valued inputs Xl xn and a single two valued

output y. Its internal parameters are a threshold T and weights Wl Wn, where each weight is

associated with a particular input variable xi. The values of threshold T and the weights wi (i-1,..

.,n) may be any real, finite, positive or negative numbers. The input-output relation of a threshold

logic element is defined as follows:

n

y = 1 if and only if E w, x_ a T
i= 1

rl

y = 0 if and only if ,_= w_x_ < T

n

where the sum and product operations are the conventional arithmetic ones. The sum _wixi is
i=1

called the weighted sum of the element. The symbolic representation of the threshold logic unit is

shown in the figure below.

x2 w_

x n

Y

3. Application to pattern recognition

The main purpose of a pattern recognition system is to make decisions concerning class

membership. In the two-class classifying problem, as well as in the multiclass problem, an equation

of a surface that separates the pattern classes is of great interest. If the surface is hyperplanar, then

we will call this equation a hyperplane equation (or decision function) d[X], and it can be

represented as follows:

where

and

d[X]=wlx 1 + "" "+ WnXn = T

or d[X] = 2 w,x, = T
_=1

X = (Xl,. • .,Xn) t is called a pattern vector and xi is the value of the i th feature,

wi = i th weight,

T = threshold.

As an illustration, for the two-class two-feature case, for values of X that make d[X] > T, we can

consider X belonging to one class, and for d[X] < 0, we can consider X belonging to another. The

two pattern populations can be separated by the linear equation d[X] = WlXl + w2x2 = Tand is

shown below

x 2

d[X]=w _ i+ w 2v2-T

xN__/// d[X]> T

x 1

From the figure, it is clear that for values of xl and x2 that make d[X] _>T, we can consider

X belonging to C1, and to C2 if d[X] < T. This is in the form of the threshold unit discussed

previously and the next step is to determine the parameters w and T. Methods for obtaining these

parameters are discussed in the next section.

4. Method of obtaining the hyperplane equation _ia threshold

logic

The method of obtaining the hyperplane equation that separates different classes can be

illustrated by the following two-class three-feature problem. Suppose we have 8 patterns each with

three features with 4 patterns classified as class 0 and 4 patterns classified as class 1. Let the

following truth table describe the problem.

Features Class

Xl x2 x3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

output d

0

0

0

1

0

1

1

1

Hyperplane equation

w i xl + w2X2+W3X3= T

0<T

w3<T

w2<T

w2+w 3 :- T

Wl<T

Wl +w3>T

w I +w 2 _ T

Wl +w2 + w3 >- T

From the above truth table, for the output to be class 0 (d=0), four inequalities yield

0<T

w3<T

w2<T

Wl<T

and for the output to be class 1 (d=l), four inequalities yields

w2+ w3>_T

Wl+W3>T

Wl+W2zT

Wl+W2+w3>_T

Combining these inequalities, we have

0<T

WI>_0

W2_>0

w3>_O

and finally the condition,

0<w 1,w2,w3<T. (*)

As a possible selection, choosing Wl=W2=W3=1 and T=l.5,

the hyperplane equation now becomes,

Xl + x2 + x3 = 1.5.

It is important to note that there are an infinite number of wi's and/_s that satisfy (*). As an

illustration, the following figure shows how the hyperplane equation separates one class of vectors

from theother.

(0,1,1)

(1,0,1)

(0,1,0)

x2

(1,0,0)

/
x
I

d[h'l = + -_2+ x3 .3x I -2

Also, a possible threshold logic unit realization for proper classification is shown as follows:

x 1

x2 1 1

X
3

d

Although for this problem, the parameters(i.e., wi's and T) are fairly easy to obtain by examining

the inequalities from the truth table, other pattern classification problems that deal with many input

features can be less trivial. For 9 inputs, 512 inequalities are needed. In general, n input features

require 2n inequalities. The solution to such a large set of inequalities is a challenging computation.

Therefore, a simpler and more effective systematic method for solving for the parameters is desired.

A possible method is presented in the following section.

5. A systematic method for obtaining the TLU's parameters

In order to find a simpler and more effective systematic method for obtaining a linear

hyperplane that separates input patterns into different class, properties of linear separability are

examined.

Given n binary valued features, there exists 2 n input patterns. If there exists a linear

equation that separates patterns that correspond to outputs equal to zero(false nodes) to patterns

that correspond to outputs equal to one(true nodes), then the patterns are linearly separable. This

linear equation corresponds to a (n-l) dimensional hyperplane. From the n(binary valued)

features, a boolean functionfconsisting of minimal sums-of-products(MSP) can be obtained by

means of Quine-McCluskey tabular methods. Now, using the concept of lattices, for a hyperplane

equation that separates the patterns to exist, it is necessary, for the MSP function fto consist of each

variablexi(x]) to appear only in uncomplemented(complemented) form. If so, fis said to be

unate. Unfortunately, the property of unatness is only a necessary condition for linear separability

and not a sufficient one. Next, in order to obtain this hyperplane, it is necessary to find the two

different sets of patterns that are the closest to each other. This can be achieved by obtaining the

minimal true nodes and the maximal false nodes. The minimal true nodes are the set of patterns that

constitute to the minterms of the MSP function f. The maximal false nodes are found by

determining all false nodes with just one feature whose value is 0, then all false nodes with two

features whose value is 0, and so on, leaving out all nodes smaller than the ones already selected.

To determine whether or not f is linearly separable, and if it is to find an appropriate set of

parameters, it is necessary to determine the coefficients of the hyperplane equation. This is

accomplished by deriving and solving a system of pq inequalities(i.e., all combinations of
n j!

false(_,wixi) < true(_wixi)), corresponding to the p minimal true and q maximal false nodes. If
i=1 i=1

thepq inequalities can be solved, then there exists a hyperplane that separates patterns correctly. For

the example mentioned in section 4, the MSP form f= XlX2+X2X3+XlX3 and is unate. The minimal

true nodes are (1,1,0),(0,I,1), and (1,0,1), and the maximal false ones are (0,0,1), (0',1,0), and

(1,0,0). The system of inequalities yields all combinations of

_vl [wt + w 2

]'¢2 < _ 'W2 +]'¢3
!

% [Wl +%

and reducing the inequalities, we have

O<w 1

O<w 2

0<w3.

If we let Wl = w2 = w3 = 1, and substititing into (**) above, we obtain 1<2 for all combinations of

the system of inequalities. Now, since we want the threshold T to be located some_vhere between

n ?1

all combinations of false(_WiXi) < true(_wixi), T=l.5 is a possible choice. This agrees with the
i=1 i=I

results obtained from the example in section 4.

6. Introduction to multiple valued logic

Multivalued logic is a generalization of binary logic for an arbitrary number n of truth

values,where n >2. The truth values (or degrees of truth) are usually chosen to be rational numbers

between 0 and 1. The set Tnof truth values is usually defined as

Tn ={0= 0 1 n- 1 1}.
n- 1 'n- 1 n- 1-

Many multivalued logics can be formulated depending on how the basic logic operations of

disjunction, conjunction, negation, and implication are defined. For example Lukasiewicz logic

uses the following definitions.

= 1 - a, a vb = max (a,b), a ^b = min (a,b),

and a --,b = min (1, 1+ b - a). (1)

When n ---_o0, we obtain an infinite valued logic where the truth values are all rational numbers in

the interval [0,1] taken from the set Too. If we insist on taking all real numbers in the interval [0,1]
I

rather than those from the set T_, we can obtain an alternative infinite-valued logic, usually

denoted by L1. This is also known as standard Lukasiewicz logic. However, these two infinite

logics are essentially equivalent if one is one concerned with the tautologies they represent. There

is a one-to-one correspondence (isomorphism) between set theory and logic because the set

theoretic concepts of union, intersection, complement and inclusion correspond to the logical

concepts of disjunction, conjunction, negation, and implication.

Fuzzy set theory is generalization of classical set theory where the membership value of an

element in a set can take any value in the unit interval [0,1]. Given the isomorphism between set

theory and logic, one can view fuzzy set theory based on max, rain, and 1-a operators for union,

intersection and complement as an infinite-valued standard Lukasiewicz logic Ll. Simil_ly, if we

restrict the membership values that can occur in fuzzy set theory to the set Tn, then we obtain a

discretefuzzy settheorywhich is essentially equivalent to multivalued logic. (One can make n as

large as one wishes, depending on desired the accuracy of representation.)

For multi-criteria decision making and information fusion methods based on fuzzy set

theory for pattern recognition and computer vision, the aggregation takes place in a hierarchical

network, where the type of aggregation (conjunctive, disjunctive, etc) at each node is determined

through a learning procedure. The learning procedures we have developed are based on gradient

descent, and use training data to adjust the parameters of the nodes so that the sum of squared

errors between the desired output and the actual output is minimized. Two powerful aspects of

these learning methods are that they are capable of i) eliminating uninformative and unreliable

criteria (i. e., pruning the decision tree), and ii) generating a set of decision rules automatically

from the training data. However, since these algorithms are based on gradient descent methods,

they can be slow and sometimes they may converge to local minima. Thus, alternative methods to

synthesize such aggregation networks are highly desirable. One consequence of the equivalence

between discrete fuzzy set theory and multivalued logic is that we can borrow concepts from

multivalued logic to analyze and synthesize aggregation networks based on fuzzy set theory.

The problem of function minimization (to eliminate redundancy) and synthesis has been

discussed in section 5 for the binary case (e.g. Quine-McCluskey). Several techniques are based

on the concept of lattices. Algorithms to implement the resulting binary functions in terms of

threshold logic units also exist in the literature (e. g. McNaughton). Hampson et al have derived

some theoretical results for the case when the inputs are multi-valued, but the output is binary.

Although a binary output may be sufficient for some pattern recognition applications, it is not

general. Also, the authors do not suggest any methods for the construction of such networks.

Recently there has been some interest in function minimization methods for multi-valued logic. The

continued work proposed herein will draw from the existing literature and analyze both the

theoretical and practical aspects of multi-valued logic function synthesis. These results will be then

used to construct the decision functions in terms of fuzzy logic units for pattern recognition and

computer vision. The advantages of the proposed methods are that

i) theyarehighlyamenabletotheoreticalanalysis,

ii) redundancydetectionis handlednaturallyin thefunctionminimizationprocess,and

iii) theresultingnetworkisalwaysguaranteedto begloballyoptimalfor thetrainingdata.

In fact, in thecaseof patternrecognitionproblems,theclassificationerroron thetrainingdatawill

be zero.

7. Bibliography

1. G.J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information, Englewood Cliffs,

N.I: Prentice Hall, 1988.

2. S.E. Hampson and D. Volper, "Representing and Learning Boolean Functions of Multi-

valued Features", IEEE Trattsactions on Systen_, Man and Cybernetics, Vol. 20, No. 1,

Jan/Feb 1990, pp. 67-79.

3. Proceedings of the 21st International Symposiwn on Multiple-Valued Logic, IEEE

Computer Society Press, 1991.

4. Z. Kohavi, Switching and Finite Automata. New York: McGraw-hill, 1976.

5. E.J. McCluskey, Logic Design Principles. Englewood Cliffs, NJ: Prentice Hall, 11986.

Feature Cal¢ulaOQn

Since we have experienced a delay in obtaining imagery from NASA, we have

postponed much of the work on this task until that time when the data becomes available.

As mentioned in the first quarter report, we have available numerous algorithms which we

routinely use to generate features from digital images. These are ready, and will be run on

the data when it arrives. The section on Acquisition of Images will detail our progress on

generating our own "simulation" imagery.

Calculation of Membership Functions

Our work in this area has progressed nicely. We have designed and implemented

numerous algorithms to generate membership values from a set of training data using

histograms, results of fuzzy clustering, and heuristic definitions. We have also made

progress in the transformation of "probability density functions" into possibility

distributions for use in assigning membership values to individual points. Since this task

overlaps into the third quarter, we are going to postpone the complete write-up until the

third quarter report. Hopefully, at that time, we will be able to supply a preprint of a paper

describing our new results. We feel that that approach is the most profitable, since the

paper will contain a concise statement and solution to the problem.

Acauisition of Images

As mentioned in the beginning of this report, we are waiting to receive

imagery from NASA on which to test our algorithms. In the meantime, we have built a

scale model of the shuttle, and built a mechanism to position this model at known

orientations relative to the camera. We have begun to digitize images of this model to test

some of the algorithms while we are waiting for the NASA pictures. We are including a

few of these images both in hard copy form and on the accompanying tape.

Clustering fpr Curve _nd $0rf_¢¢ Fittin_

The best way to describe the new work in this task is to include a copy of a

manuscript recently submitted by Dr. Krishnapuram and two of the graduate students

supported by this contract to the 1992 IEEE Computer Vision/Pattern Recognition

Conference.

The title of the paper is:

"Quadric Shell Clustering Algorithms and Their Applications".

This represents the extension of the previously reported work to clustering edge

data into general quadratic curves. We are also extending this approach to 3-Dimensional

data sets(ie, surfaces).

Quadric Shell Clustering Algorithms and Their Applications

Raghu Krishnapuram, Hichem Frigui, and Olfa Nasraoui

Department of Electrical and Computer Engineering

University of Missouri, Columbia, MO 65211

ABSTRACT

In this paper, we introduce new hard and fuzzy clustering algorithms called the C Spherical

Shells (CSS) algorithms and the C Quadric Shells (CQS) algorithms. The C Spherical Shells

algorithms are specially designed to search for clusters that can be described by circular arcs, or

more generally by shells of hyperspheres. The C Quadric Shells algorithms are expressly designed

to seek clusters that can be described by segments of second-degree curves, or more generally by

segments of sheUs of hyperquadrics. Most previous clustering algorithms assume that the clusters

are "filled", i. e., they are not hollow. Such algorithms cannot cluster data that lie on shell-like

subspaces of the feature space. The advantage of our CQS algorithms lies in the fact that they can
i

be used to cluster mixtures of all types of hyperquadrics such as hyperspheres, hypereliipsoids,

hyperparaboloids, hyperhyperboloids, and hypercylinders. We also introduce cluster validity.

measures for shell-like clusters, and show that the validity measure can be used to determine the

number of clusters when this is not known. Several examples of clustering in the two-dimensional

case axe shown and their applications are suggested. These algorithms can easily outperform the

traditional algorithms based on the Hough transform for boundary detection.

Acknowledgment:

This research was partially supported by NASA/JSC through subcontract No. 088 by the

RICIS center at the University of Houston -Clear Lake (Cooperative Agreement No. NCC 9 - 16,

Project No. SE. 42)

Summary

1. This paper is about partitioning n-dimensional data points which are assumed to lie on (possibly

an unknown number of) hyperquadric surfaces into meaningful clusters. In other words, the

clusters we decal with are described by shell-like subspaces of the original feature space.

2. We introduce new hard and fuzzy clustering algorithms called the C Spherical Shells (CSS)

algorithms the C Quadric Shells (CQS) algorithms. The CSS algorithms search for clusters that can

be described by circular arcs, or more generally by shells of hyperspheres. The CQS algorithms

seek clusters that can be described by segments of second-degree curves, or more generally by

segments of shells of hyperquadrics. We also introduce cluster validity measures for shell-like

clusters, which can be used to determine the number of clusters when this is not known.

3. Most objective-function-based clustering algorithms in the literature consider only "filled"

clusters, and hence they cannot be used when the clusters are hollow. The few shell clustering

algorithms that have considered hollow clusters work only for clusters of specific shapes such as

circles or ellipses in 2-D. The few existing algorithms are also implementationally complex since

they require solving coupled nonlinear equations for the shell parameters. They do not perform

well on partial shells either. Our algorithms do not involve nonlinear equations, i. e., they have

solutions in closed-form. Thus, they are much faster. Moreover, they can be used to cluster

mixtur¢_ of all types of hyperquadric shells such as hyperspheres, hyperellipsoids,

hyperparaboloids, hyperhyperboloids, and hypercylinders. Our algorithms can easily outperform

the traditional algorithms based on the Hough transform in boundary detection and other

applications.

4. The proposed algorithms can be used for various applications such as boundary detection and

pattern classification. They can also be used for surface fitting and description in 3-D (i. e., with

range data). These algorithms can potentially lead to a more general class of algorithms that deal

with shells of more complex types.

1. Introduction

Many clustering algorithms have been suggested and used in the literature to partition data

into clusters. Clustering algorithms can be categorized into two classes, depending on whether a

feature point belongs to just one cluster or to all C clusters, albeit to different degrees. These two

classes are known as hard (crisp) and fuzzy algorithms respectively. There is an entire class of

clustering algorithms in which an objective function based on a distance measure is iteratively

minimized to obtain the final partition [1,2]. The distance measure chosen and the objective

function being optimized depend on the geometric structure of the clusters. For example, the K-

means algorithm, using the Euclidian distance, looks for hyperspherical clusters [3]. The

Gustafson-Kessel algorithm uses a weighted Mahalanobis distance, and can detect hyperellipsoidal

and hyperplanar clusters [1].

Until recently, it has been difficult to detect clusters that can be described by shell-like

subspaces i.e., clusters that are not "filled" but are hollow. Dave's [4,5] Fuzzy C Shells (FCS)

algorithm ha.'; proven to be successful in detecting clusters that can be described by circular arcs, or

more generally by shells of hyperspheres. Several impressive examples involving two-dimensional

data sets are i_ven in [4,5]. Dave et al have also generalized this algorithm to the case of ellipsoidal

shells [6,7] and this algorithm is known as the Fuzz, Adaptive C-Shells (FACS) algorithm.

However the FCS and the FACS algorithms are implementafionally complex since they involve the

use of Newton's method to solve coupled nonlinear equations for the shell (prototype) parameters.

Moreover, the performance of the FACS algorithm is not good for partial curves. A modification to

the FCS algo:rithm has been suggested by Bezdek et al to reduce the computational burden [8].

In this paper, we propose new C Spherical Shells (CSS) algorithms that do not involve

coupled nonlinear equations, i. e., they have solutions in closed-form. This makes our algorithm

straightforward, and more importantly, computationally more attractive. In addition, we present a

new set of hard and fuzzy clustering algorithms that generalize the Fuzzy C Shells and the

Adaptive FuzzyC Shellsalgorithms.We call thesealgorithmsthe C Quadric Shells algorithms.

They use an objective function based on a new distance measure and they seek clusters which can

be described by segments of second degree-curves, or more generally by segments of shells of

hyperquadrics. We also propose algorithms to determine the optimum number of clusters C, when

this is not known. These algorithms involve minimizing a validity (performance) measure called

the shell thickness. One major advantage of our CQS algorithms is that they are able to partition a

composite mixture of different types of hyperquadric shells, whereas previous cluster-based and

non-cluster-based algorithms apply to a specific type of hyperquadric. For example, Hough

techniques to find analytical curves can be implemented efficiently only for specific types of curves

[9]. This asp_t is discussed further in Section 6. The other advantages of our approach are that

they are computationally and implementationally simple, the memory and CPU time requirements

are reasonable, and they do not require the a priori knowledge of the number of clusters present in

the input dam set.

Section 2 presents the hard and fuzzy versions of our C Spherical Shells algorithm. Section

3 introduces the hard and fuzzy versions of our C Quadric Shells (CQS) algorithm. Section 4

describes cluster validity measures and unsupervised algorithms which can be used to determine

the optimum number of clusters when this is not known a priori. In Section 5 several examples of

clustering using the proposed algorithms are presented and applications in computer vision and

pattern recognition are suggested. Finally, section 6 gives the summary and conclusions.

2. The C Spherical Shells (CSS) Algorithms

In the case of C Spherical Shells algorithms, the assumption is that each cluster resembles a

hyperspherical shell, or part thereof. Let xj be a point in the feature space. The prototypes &i

consist of two parameters (c i, ri), where c i is the center of the hypersphere and r i is the radius. We

define the distance from xj to a prototype &i = (% ri) as

dsi ? = ds2(xj,Ai) = (11xj- till 2- ri2) 2. (1)

2

The subscript S in the above equation stands for "spherical". Note that the right hand side of (I),

when equateA to zero, also gives the equation of the hypersphere. In general, the closer xj is to the

specific hypersphere, the smaller the distance will be. Based on this distance measure, we now

define the hard and fuzzy C Spherical Shells algorithms.

2.1 The Hard C Spherical Shells (HCSS) Algorithm

We define the objective function to be minimized in this case, as

Js (L') = i_ 1 _,14 d2ij ,
• "_ Xj

(2)

where L = (,,1.1..... ,a.K), and K is the number of clusters. In order to minimize the objective function

in (2), we rewrite the distance in (1) as

4ij ==PT A_ pi + vT]Pi +bj,

where

]A_=yjyy, and pi = cTi ci.r 2 .

Therefore,
K

+bj). (4)

(3)

_ We may assume that the vectors Pi are independent of each other. Hence, the vectors Pi

minimize (4) must mtisfy
.¢

_, (211I;p i + O.
xje Zi J i_.) = (5)

If we define

H i = _-_ M. andw i= _, v.
xje _i J ' xje _ti J "

(6)

from (5) we obtain

that

3

1
Pi = - 2 Iti'lwi

The resulting Hard C-Shells (HCS) algorithm is summarized below.

(7)

THE HARD C SPHERICAL SHELLS (HCSS) ALGORITHM:

Fix the number of clusters K;

Set iteration counter 1 = 1 and initialize the hard K-partition;

Repeat

Calculate Hi(!) and wi(l) for each cluster using (6);

Compute p/l) for each cluster using (7);

into cluster _/if 4 < d2kj ' for all k ;_ i;Classify

Increment I;

Until (lip (ll) - p(l)ll < e),

2.2 The Fuzzy C Spherical Shells (FCSS) Algorithm

For the fuzzy case, we minimize the following objective function:
K N

Js(L,U) = _ _a (11ij) m d 2i=lj=l ij"
(8)

In (8) N is the total number of feature vectors, and U = [gij] is a K x N matrix called the fuzzy K-

partition mauix [1] satisfying the following conditions:
K

_ij _ [O'l]f°ralliandJ' i_' 1 _ij = 1 forallj, and0<

N
u_ < N for all i.

j-1

l.tij is the grade of membership of the feature point xj in cluster $i, and m e [1,oo) is a weighting

exponent called the fuzzifier. As in the hard case, it is easy to show that the vectors Pi that

minimize (8) are given by (7), where
N N

Hi= j_lO._ij)m_, Wi = j_l(llij)m_, (9)

and vj and Mj are given by (3). Using a proof similar to that of Bezdek's for the fuzzy C-means

algorithm [1], it can be shown that the memberships will be updated according to

4

j!_ i if Ik= 0_++ = i _ Ik if I+ ++f3

i m Ik if lk + O

where I k = {i I 1 <_ i < K, d2ik= 0}. The resulting Fuzzy C Shells

summarized below.

(10)

(FCSS) algorithm is

THE FUZZY C SPHERICAL SHELLS (FCSS)ALGORITHM:

Fix the number of clusters K; fix m, 1 < m < ,0;

Set iteration counter l = 1;

Initialize the fuzzy K-partition U(°);

Repeat

Calculate Hi(l) and wi(l) for each cluster ,_,i using (9);

Compute pi (l) for each cluster A/ using (7);

Update U (l) using (10);

Increment l ;

Until (ll U (1-1)- U(I)II < e);

Both the hard and fuzzy C-shells algorithms require the inversion of the matrix Hi. This is quite

trivial when the feature space is two-dimensional or three-dimensional. In the hard case, the

inverse will exist if there are at least n+l non-collinear points in each cluster, where n is the

dimensionality of the feature space. In the fuzzy case, theoretically the inverse will always exist as

long as N > r,+ 1 and the feature vectors are not collinear.

3. The C Quadrie Shells (CQS) Algorithms

The C Spherical Shells algorithms can be generalized to include shells of (hyper)quadric

surfaces, rather than just (hyper)spherical shells. We first present the two-dimensional case

because it is easier to formulate. We then generalize the algorithm to the n-dimensional case.

Let xj = [Xjl, Xj2] be a point in the 2-D feature space. In the two-dimensional case, we

assume that each cluster resembles a second-degree curve. Therefore, the prototTpes fli consist of

six parameters [ail, ai2 , ai6] which define the equation of the curve. We define the distance

from xj to a prototype fli as:

d2Qij -= dQ2(Xj,fli) = (ail x21 + ai2 x_ + _[2 ai3 xjlxj2 + ai4 xjl + ai5 xj,2 + ai6) 2. (11)

The subscript Q in the above equation stands for "quadric". The right hand side of (11), when set

to zero, also represents the equation of the second-degree curve which the prototype represents.

The coefficient of the xjlxj2 term in (11) is assumed to be 4"2 ai3 without loss of generality. This

results in a simpler notation for a constraint that we will used later. Based on this distance measure,

we now define the hard and fuzzy CQS algorithms.

3.1. The Hard C Quadric Shells Algorithm

In the hard case, we define the objective function to be minimized as
K

JQ (L) = i=lZ x._fli d2Qij ' (12)

where L = (fll ill(,), and K is the number of clusters. In order to minimize the objective

function in (I 2), we rewrite the distance in (11) as

d2Qij = dQ2(Xj,fli) = (x T A i xj+ x T. vi+ b i)2 (13)J

[a/1 ai3/'_l_] [ai4q= , v i = and b i (14)
where A i ai3/.f _ at2 [.aiM, = ai6.

Equation (1311can be rewritten as

r:" Pi Mj Pi , (15-a)

where the Pi represent the parameters of the prototypes of the clusters, and are givea by

pT = [pTil IpTi2], pT = [ail ' ai2, ai3] ' and pT = [ai4 ' ai5, ai6]" (15;-b)

The Mj in (15-a) are given by

6

Qj RT]
J ,

Mj= Sj
(15-c)

where

Qj = qJ qT with qT = [x_2l, x_, _r2xjlx12],

Sj = sjs T, with _ = [Xjl, xf2, 1], and

T

Rj-sjqj.

(16-a)

(16-b)

(16-c)

Using (15) and (16), (12) can be written as
K

JQ(L) =_. X pTi MjPi.
i=l xj_ fli

(17)

JQ(L) is homogeneous with respect to Pi. Therefore, we need to constrain the problem in order to

avoid the trivial solution. Some of the possibilities are:

(i) Ilpill2 = 1

(ii) b i = 1, and

(iii) Tr(A i A T) = IlPilll 2 = 1.

Constraint (ii) assumes that the curve does not pass through the origin. The last constraint has the

advantage that the resulting distance measure is invariant to rigid transformations of the prototype

[10]. However, if one is simply interested in clustering the data and not interested in obtaining

invariant parameters of the clusters, one may use constraint (i). We found that constraint (iii)

works best in practice.

While minimizing (17), we may assume that the vectors Pi are independent of each other.

Hence, the ot0ective is to minimize

= _._ pTMjp i
JQ(fli) xF fli

If we define

Fi=xj_fl(QJ" Gi= _-Uxie'i R j,

subject to IlPilll2 = 1. (18)

Hi =xj_fliSj, and
(19)

7

me-

[T]xj_Efl i F i G i , thenWi = Mj = Gi Hi

using a Lagrange multiplier we can recast (18) as
T

JQ(fli, _,) =Pi Wi Pi- _" (IlpillI2 - 1).

Setting the gradient of JQ(fli, X) with respect to Pi equal to zero yields

Wi Pi = _, Pi 1, and

[F, c7] =
Gi Hi .] LPi23

Equation (21) can be solved forPi 1 andpt 2. The solution is given by

Pil = eigenvector of (F i - G T ITil Gi) associated with the smallest eigenvalue.

Pi2 =" Hi 1 Gi Pil

The resulting hard CQS algorithm is summarized below.

(20)

(21)

(22-a)

(22-b)

THE HARD C QUADRIC SHELLS (HCQS) ALGORITHM:

Fix the number of clusters K;

Set iteration counter I = 1;

Apply the HCSS algorithm until it converges to initialize the hard K-partition;

Repeat

Calculate F! l), G!l)and H! l) using (19) and (16);
! l l

Compute p_l) for each cluster using (22);

2
Classify xj into cluster fli if _ < d_j for all k _ i;

Increment 1;

Until (IIp(/-1)_ p(/)ll < e).

Note that the HCSS algorithm has to be applied in order to get a good initial K-partition. Otherwise

the performance of the HCQS algorithm is poor.

8

3.2. The Fuzzy C Quadric Shells algorithm

For the fuzzy case, we minimize the objective function
K N

J Q(L,U) = i _= l j _l (J.tij)m d2Qij , (23)

where N is the total number of feature vectors and U = [l.tij] is the K x N fuzzy K-partition

matrix, as described in Section 2.2. As in the hard case, it is easy to show that the vectors Pi that

minimize (23) subject to the constraint I_Pill12= 1 are given by (22) where
N

Fi = _l (#ij)m Qj ,
j =

N N

= _ _l(J.tij)mSj (24)G i]= (#ij) mR j, H i J= ,

and Qj, Rj and Sj are as in (16).

Minimization with respect to the Pij can be done as before, if we follow Bezdek's theorem

for the fuzzy C-means [I]. It can be shown that the memberships ",viii be updated according to

1

_-1 -
/-lit = 0 i_ Ik

1 ieIk

where 1k = {i I 1 < i < K, ,._d2_ik= 0 }.

ifIk=O

The resulting FCQS algorithm is summarized at the end of section 3.3.

(25)

3.3. The n-dimensional case

Both the hard and the fuzzy C Quadric Shell algorithms can be extended to the n-

dimensional case very easily. In this case, the distance measure is still in the form given by (13),

where A i is an nxn symmetric matrix given by

9

Ai

ail ai(n+I¢_r_ ai(2n-l¢_l_-

ai(n+ l ¢ _f_ ai2

- ai(2n.1)/_l-2 air]_ ain

and vi is an nxl vector given by

ai(r+l)

•
v i = , and b i =ai(r+n+l),wherer= 2

Lai(r+n)-a

This distance measure can again be written as (15-a), if the Pi are given by

(26-a)

(26-b)

pT = [ail ' ai 2..... air] , and pT = [ai(r+l) ai(r+n+l)]"

Similarly (16) needs to be modified as:

Qj = qj qT, where

T x2 2 ., x 2
qj = [jl' _2' " • jn' '[-2XjlXj 2 "_J2XjkXj I _/'-2xj(n_lyrjn], and

S) = sj s Tj, where sT = [Xjl, xj2 xjn, 1].

(27-a)

(27-b)

The Hard CQS algorithm remains the same if these new definitions are used. The fuzzy CQS

algorithm is summarized below.

THE FUZZY C QUADRIC SHELLS (FCQS) ALGORITHM:

Fix the number of clusters K; fix m, 1 < m < 0%

Set iteration counter I = 1;

Initialize the fuzzy K-partition U(o) using the FCSS algorithm;

Repeat

Calculate F! l), G!l)and H!0for each cluster fli using (24) and (27);
l 1 I

Compute pi (l) for each cluster fli using (22);

Update U(l) using (25);

Increment I ;

Until (11U(l-1) - U(1) II < e);

10

r

The FCQS algorithm is somewhat sensitive to the initialization process. Hence the FCSS algorithm

needs to be applied to obtain a reasonable initial fuzzy K-partition U(°).

3.4 The Modified C Quadric Shells Algorithm

The distance dQ2(Xj,/3i) defined by (13) is highly nonlinear in nature. It is easy to show

through simple examples that this distance is sensitive to the placement of xj with respect to the

prototype /3i" This does not cause problems if the clusters are well-defined quadric shells.

However, if the clusters are ill-defined or if there is a lot of noise, the resulting estimates of the

parameters of/3i and the memberships #iy can be significantly influenced by outliers. To alleviate

problem, one may use the shortest (perpendicular) distance (denoted by d'_ij

A

this) between the

point xj and the shell/3i" We now describe how this is achieved.

Let xj be a point in the feature space. The distance measure a_pij is the minimum distance

point xj to the quadric curve fli describing the cluster. Finding the d2pij canfrom the be formulated

as:

d2pij = rain zll 2 such that (zTAiz + zTvi + bi) = 0Ilxj (28)

where z is a point lying on the quadric curve describing cluster 13,. Using a Lagrange multiplier 2,

(28) reduces to minimizing (llxj - zll2- A (zTA_z + zTvi + bi)) with respect to z and _. This yields

2(x/ - z) + A (2A i z + vi) = 0, and (29)

zTAi_: + zTvi + bi = 0 (30)

Equation (29) can be solved for z as
1

z = _ (I- ,,L4i)-I (Avi+ 2xj). (31)

Substituting(3I)in (30)yieldsan equationin A which isa quartic(fourth-degrcc)equation in the

2-D case,and has atmost fourrealrootsAk, I < k < 4. For higherdimcnsions the cquation isof

6th dcgrce or highcr.Solvingforthe fourrootsinthe 2-D case isquitestraightforwardifone uscs

the standard solution[II].Thc resultingcxprcssionsarc ratherlong and cumbersome, involving

II

nested square roots, and hence they are not presented here. For each real root 3+kso computed, we

calculate the corresponding Zk using (31). Then, we compute d2pi) using

d2Pij = m_n Ilxj - Zkll2 (32)

One can formulate the FCQS algorithm using _ij as the underlying distance measure. In this case,

the objective function to be minimized becomes
K N

= _1 -_l(JJij)m d2Jp(L,U) i= j- Pij"
(33)

Minimizing this function with respect to U yields

1 ifIk=O

j w- -j+r`.,+
lti_ = 0 i_ I_ /fIl+#13

1 i _ I_. if lk :_ 0 (34)

However, minimizing (33) with respect to the parameters Pi results in coupled nonlinear equations

with no closed-form solution. To overcome this problem, we may assume that we can obtain

approximately the same solution by using (22), which will be true if all the feature points lie very

close to the hyperquadric shells. This assumption leads to the following modified FCQS algorithm.

THE MODIFIED FUZZY C-QUADRIC SHELLS (MFCQS) ALGORITHM:

Fix the number of clusters K; fix m, 1 < m < _;

Set iteration counter I = 1;

Initialize the fuzzy K-partition U(o) using the FCSS algorithm;

Repeat

--F_//),G!t)andt H!/)fort each cluster 13i using (24) and (16);Calculate

Compute pfl) for each cluster fli using (22);

compute d_i j

Update U(l)

Increment I;

Until (

using (30),(31) and (32)

using (34);

II U(1"1) - U(1) II < e);

12

It is to benotedthat thismodifiedalgorithmis easyto implementonly in the2-D case.In higher

dimensions, _lving for _ci2pijis not trivial. In practice, we found that in the 2-D case the modified

FCQS algorilhm converges much faster than the original version. This may be attributed to the fact

that the membership assignment based on the perpendicular distance is more reasonable.

4. Determination of the Optimum Number of Clusters

The algorithms discussed in Sections 2 and 3 assume that the number of clusters K is

known. This is indeed the case in many pattern recognition applications and some computer vision

applications. When the number of clusters is unknown, one method to determine the optimal

number of clusters is to perform clustering for a range of K values, and pick the K value for

which a suitable performance measure is minimized (or maximized). For the fuzzy CQS

algorithm, we define a new performance (or cluster validity) measure called the total fuzzy shell

thickness as follows.
K N

TQ(K') = i _=1 j _l (]Aij)m d2piJ ' (35)

which is also the objective function in (33). TQ(K) will be small if all points lie close to dne of the

K quadric shells. In the hard case, the total shell thickness measure becomes
K

TQ(K) =i___ ixj_flid2pij.
(36)

In the special case where all the quadric curves representing the clusters are (hyper)spheres,

another validity measure called the total fuzzy average shell thickness for spherical shells may be

defined as
N

K Z _//_(]]Xj- Ci]]- ri) 2

Ts(K) = Z y = 1

i=1 Zu¢
./-1 (37)

In the hard case, this becomes

13

K

El I "ciII-"i)2

where N/is the number of points in cluster 2i.

(38)

To find the optimum number of clusters when the FCQS algorithm is used, one can start

with K = 1, and keep incrementing K while calculating TQ(K) after each run of the FCQS

algorithm, and stop as soon as a knee point or a local minimum in the curve of TQ(K) is found (or

K reaches Kmax). This unsupervised algorithm is summarized below.

THE UNSUPERVISED FUZZY C QUADRIC SHELLS ALGORITHM:

SetK= 1; fixm, 1 <m <0_;

local__n or knee_point = false;

While K <= Kmax and local_rain or knee..point = false do

Perform the FCQS algorithm with the number of clusters = K;

Calculate TQ(K) as given by (35);

If TQ(K-1) is a local minimum or a knee point Then

local_min _orknee__point = true;

K_optimal = K- 1;

Else

K=K+ 1;

End If

End While

Similar unsupervised algorithms can be designed with the HCSS, FCSS, and HCQS algorithms.

5. Experimental Results

In this section, we illustrate the algorithms presented in Sections 2, 3, and 4 through

several examples. We present only results of two-dimensional data sets in this paper, even though

the algorithms presented are applicable to feature spaces of any dimension. In general, we found

that the hard CSS and CQS algorithms are about an order of magnitude faster than their fuzzy

I4

Ik

counterparts, but they perform well only when the clusters are not highly entangled. Thus, the hard

versions are not very robust, and hence we do not present their results in this paper.

We first show the results of the FCSS algorithm. In these examples, the number of clusters

is assumed to be known, although an unsupervised algorithm to find the optimum number of

clusters can casily be devised using the performance measure in (37). In all the examples shown,

the FCSS algorithm was applied with the fuzzifier rn = 5. Smaller values did not yield good

results. This may be because we initialize the fuzzy partition matrix U with the fuzzy C means

algorithm [1] which does not yield a good partition of the clusters, particularly in the case of

overlapping or concentric circles. By making the partitioning as fuzzy as possible, it is possible to

disentangle the intertwined clusters from each other using the FCSS algorithm. The data sets in

images of size 200x200 shown in Figure 1 were artificially generated, and had between 50 and

200 feature points. Uniformly distributed noise with an interval of 3 was added to the feature point

locations so lahat they do not always lie exactly on the ideal circles. In addition, noise points were

added at random locations to some of the data sets.

I

Figure 1 (a) shows the result of clustering two semicircles contaminated by noise. This

example shows that the algorithm is successful even when only parts of circles are present. The

second example in Figure l(b) consists of two concentric circles contaminated by a few noise

points. This is an example where conventional clustering methods fail miserably. As seen in Figure

l(b), the two concentric circles are correctly classified, and the noise points are assigned to the

closest cluster. Figure l(c) shows the clustering of five sparsely sampled overlapping circles. This

is a very difficult case, because the circles are truly entangled, and the initial partition is quite

wrong. The (2PU time required on a Sun 4 workstation to run the FCSS algorithm is typically on

the order of Is.

We next present the results of the unsupervised MFCQS algorithm. In all the examples

shown in thi_ paper, the initial fuzzy K-partition was obtained as follows. The Fuzzy C-Means

15

algorithmwasfzrstappliedwith thefuzzifierm = 2 for five iterations. The resulting fuzzy partition

U was quite poor at this point. Therefore, this was followed by the application of the FCSS

algorithm with m = 2. After the FCSS algorithm converged, the MFCQS algorithm was applied

with m = 2.

000_ 000 OO&o

A 0o° ° Oo

00 &A O

l'A A _¢_A o
Ao66 A_

&

o
o

0

0

0

0

0
0

o _
0

0

0 o

0

0 0 0 0 0

A

_AA A
A A

A A A
m A

A A

AAA &'"
A

o 0 0 o 0

0
0

0

0

0

0

A

o
o

0

0

6,
0
0

0

0

(a) (b)

@ • @ 0 0 0 • O •
@ O O •

@ 0 @ • 0

@ 0 @ • 0

. ._[] u,,.I I A _A
0 N 0 OA me 0 A

$@ 0 °O _'
[] A [] A

U A [] A

[] Ill A
mlnk _1, A A

(c)

Figure 1: Examples of clustering using the Fuzzy C Spherical Shells algorithm. (a) two semi-

circles with noise, (b) two concentric circles, and (c) five entangled sparsely sampled circles.

16

)c?o°°° °°°°jjhlr_mmm _ml.

oo m _..._. I

%......s"

00 00000
o o °o o

_°° , , %
0 I..o00 • O_

o • • e'%i=_ o" oo
• .. _ oo -..

o m.¢ _LO •

o o-m 0 • q

°%o0: -°°° "
•: -1

°. o .,," |

00°O_ °o°O 1

(a) (b)

• ql

I'. "-. :
== "_..o_ ==_ o"

o o° _ _. 8" _¢=
• lb,,, oo _o •

0 0 I I

ee • ,, _o • _o oocc_Doo o
oO o

• • o abm_D..._OO o o

. :.::-
00 • O O •

•

"'....I._

(c) (d)

Figure 2: Examples of clustering using the modified fuzzy C Quadric Shells algorithm. (a) three

overlapping circles, (b) an ellipse enclosed by two overlapping circles, (c) three parabolas with

different orientations, and (d) a mixture of three types of quadrics: a circle, an ellipse and a

parabola.

Figure 2 shows some examples that are typical of boundary detection problems. The data

sets in images of size 200x200 were artificially generated, and had between 50 and 200 points.

17

Uniformly distributednoisewith anintervalof 3 to 5 wasaddedto thefeaturepoint locationsso

thattheydo notalwayslie onidealquadriccurves.Example1consistsof threeoverlappingcircles,

Example2 showstwo overlappingcircles enclosinganotherellipse, Example3 showsthree

differently orientedparabolas,andExample4 showsthreedifferent typesof quadric curves:a

parabola,a circle andanellipse,all in thesamedataset.In all casestheclusterscriss-crossone

another,andconventionalmethodscannotseparatethem.Theplotof thetotal fuzzyshell thickness

vs the numberof clustersfor thesefour examplesis shownin Figure 3. In everycase,the knee

point or the local minimumis clearlydefined,and picking theoptimum K is quite simple. The

MFCQS algorithm dusters all these data sets successfully, and the results are excellent.

10 5

fD

o_,_

10 4-

10 3 -

10 2-

101

0 8

[---'_'-" Example 4

I I I I I I I

1 2 3 4 5 6 7

number of clusters

Figure 3: The plot of the total fuzzy thickness vs the number of clusters.

18

z,

•t" •
° "Lo

°¢,¢

(a) (b)

"7

(c) (d)

Figure 4: Examples of unsupervised modified fuzzy quadric shell clustering. (a) two (partial)

circular cluslers, (b) two elliptical clusters, (c) a parabolic cluster and an elliptic cluster, and (d)

two crossing elliptical clusters.

Figure 4 shows several situations that are more typical of pattern recognition problems.

These data sets in images of size 200x200 were also artificially generated, and each example has

between 200 and 350 points. Uniformly distributed noise with an interval of 10 to 15 was added to

19

%

v

the feature Ixfint locations so that they do not lie on ideal quadric curves. Figure 4(a) (Example 5)

shows the result of the unsupervised MFCQS clustering of two circular clusters with different

radii. Fig. 4(b) (Example 6) shows the result of the unsupervised MFCQS clustering of two semi-

elliptical clusters with very different major and minor axes. Fig. 4(c) (Example 7) shows the result

obtained when the unsupervised MFCQS algorithm was used on a parabolic cluster and an elliptic

cluster. Finally, Fig. 4(d) (Example 8) shows the unsupervised MFCQS clustering of two crossing

elliptic clusters. These examples show that the MFCQS algorithm is effective even when the

clusters are very different in size and when only partial curves are present. The plot of the total

fuzzy shell thickness against the number of clusters is shown in Figure 5. Here again, it is vary

easy to pick the knee point and the optimum number of clusters.

o

_o

,E=

50000

40OO0

30000

2O000

10000

&

I

\\

Example 5

- - .o- - Example 6

........ t Example 7

-'" _--" Example 8

0

0 1 2 3 4 5 6 7 8

number of clusters

Figure 5: The plot of the total fuzzy shell thickness against the number of clusters.

In all the examples shown, the MFCQS algorithm performed successfully, yielding the

correct final partition of the data set. It performed well in the presence of quadric clusters of the

20

same_'peor of differenttypesandsizes.It alsoperformedwell with clustersthatrepresentpartial

quadric curvesof the sametype or different typesand sizes.The MFCQS algorithmtypically

convergedin lessthan20 iterations.TheCPU timerequiredona Sun4 workstationto run the

MFCQS algorithm was typically on theorder of 15s.This is very reasonableconsideringthe

complexityof theproblems.

6. Conclusions

In this paper, we introduced new hard and fuzzy clustering algorithms called the C

Spherical Shells (CSS) and C Quadric Shells (CQS) algorithms. These algorithms are specifically

designed to seek clusters that can be described by segments of second-degree curves, or more

generally by segments of shells of hyperquadrics. These algorithms can potentially lead to a more

general class of algorithms that deal with shells of more complex types. Most objective-function-

based clustering algorithms in the literature consider only t-died clusters, and hence they cannot be

used when the clusters are hollow. The few shell clustering algorithms that have considered hoUow

clusters work only for clusters of specific shapes such as circles or ellipses. The CSS algorithms

are excellent for the detection of circular boundaries or clusters. The advantage of our CQS

algorithms lies in the fact that they can be used to cluster mixtures of all types of hyperquadric

shells such as hyperspheres, hyperellipsoids, hyperparaboloids, hyperhyperboloids, and

hypercylinders. The examples shown in Section 5 of clustering in the two-dimensional case

illustrate the superior performance of the proposed algorithms. The hard versions do not perform

as well when the clusters are highly entangled, which shows the benefits of the fuzzy, approach.

The proposed algorithms also have several advantages over the generalized Hough

transform (GHT) methods that have been traditionally used to detect shapes of known

descriptions. One disadvantage of the GHT approach is that one needs to use a different GHT for

each type of curve. For example, one needs a Girl" for circles, another for ellipses, and yet another

for parabolas. Although one could devise a GHT that can cover all types of second-degree curves

21

-£

(or hyperquadrics), the dimensionality of the resulting parameter space (six in the case of second-

degree curves in 2-D) will be very large, and the resulting GHT would be computationally very

expensive. The memory requirements can also be prohibitive[12]. The speed of the GHT can be

improved only if we make certain assumptions about the curve, (for example, if the curve is an

ellipse etc) mad if the gradient information is available. Also, our algorithms work well even when

the edge points are somewhat scattered around the ideal curve (or hypersurface), which causes bin

splitting in the GHT. Our algorithms can locate small shell segments much better. Small peaks in

the GIlT are lost in the bias[13], and selecting a suitable threshold is difficult.

7. References

r

1. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Ch. 3,

Plenum Press, New York, 1981.

2. A. K. Iain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood

Cliffs, NJ, 07632, 1988.

3. J. Tou and R. C. Gonzalez, Pattern Recognition, Addison Wesley, Reading, M_A, I974.
i

4. R. N. Dave and S. K. Bhamidipati, "Application of the fuzzy-shell clustering algOrithm to

recognize ch:cular shapes in digital images", Proceedings of the International Fuzzy Systems

Association Congress, pp. 238-241, Seattle 1989.

5. R. N. Dave, "Fuzzy-shell clustering and applications to circle detection in digital images",

International Journal of General Systems, vol. 16, pp. 343-355, 1990.

6. R. N. Dave and K. J. Patel, "Fuzzy ellipsoidal-shell clustering algorithm and detection of

e11ipsoidal shapes", Proceedings of the SPIE Conference on Intelligent Robots and Computer

Vision IX: Algorithms and Techniques, pp. 320-333, Boston, Nov. 1990.

7. R. N. Dave, "Adaptive C-shells clustering", Proceedings of the North American Fuzzy

Information Processing Society Workshop, pp. 195-199, Columbia, Missouri, 1991.

22

8. J. C. Bezdek and R. J. Hathaway,"Accelerating convergenceof the Fuzzy C-Shells

clusteringalgorithms", Proceedings of the International Fuzzy Systems Association Congress,

Volume on Mathematics, pp. 12-I5, Brussels, Iuly 1991.

9. J. Illingworth and J. Kittler, "A Survey of Hough Transforms", Computer Vision, Graphics

and Image Processing, pp. 87-116, 1988.

10. O. D. Faugeras and M. Hebert, Techniques for 3-D Machine Perception, A. Rosenfeld

(Editor), pp. 13-51, Elsevier Science Publishers B. V. (North-Holland), 1986.

11. Standard Mathematical Tables, 21st Edition, S. M. Selby, Ed., The Chemical Rubber Co.,

Cleveland, OH 44128, 1973.

12. V. Milenkovic, "Multiple Resolution Search Techniques for the Hough Transform in High

Dimensional Parameter Spaces", in Techniques for 3-D Machine Perception, A. Rosenfeld,

Ed.,Elsevier Science Publishers, Noah Holland, 1986, pp. 231-255.

13. C. M. Brown, "Inherent Bias and Noise in Hough Transform", IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 5, No. 5, Sept. 1983, pp. 493-505.

%

23

